An expert is one who knows more and more about less and less until he knows absolutely everything about nothing

Sunday, March 20, 2016

What Is Cancer? What Causes Cancer?


Cancer is a class of diseases characterized by out-of-control cell growth. There are over 100 different types of cancer, and each is classified by the type of cell that is initially affected.
Cancer harms the body when damaged cells divide uncontrollably to form lumps or masses of tissue called tumors (except in the case of leukemia where cancer prohibits normal blood function by abnormal cell division in the blood stream). Tumors can grow and interfere with the digestive, nervous, and circulatory systems, and they can release hormones that alter body function. Tumors that stay in one spot and demonstrate limited growth are generally considered to be benign.
More dangerous, or malignant, tumors form when two things occur:
  1. a cancerous cell manages to move throughout the body using the blood or lymph systems, destroying healthy tissue in a process called invasion
  2. that cell manages to divide and grow, making new blood vessels to feed itself in a process called angiogenesis.
When a tumor successfully spreads to other parts of the body and grows, invading and destroying other healthy tissues, it is said to have metastasized. This process itself is called metastasis, and the result is a serious condition that is very difficult to treat.
How cancer spreads – scientists reported in Nature Communications(October 2012 issue) that they have discovered an important clue as to why cancer cells spread. It has something to do with their adhesion (stickiness) properties. Certain molecular interactions between cells and the scaffolding that holds them in place (extracellular matrix) cause them to become unstuck at the original tumor site, they become dislodged, move on and then reattach themselves at a new site.
The researchers say this discovery is important because cancer mortality is mainly due to metastatic tumors, those that grow from cells that have traveled from their original site to another part of the body. Only 10% of cancer deaths are caused by the primary tumors.
The scientists, from the Massachusetts Institute of Technology, say that finding a way to stop cancer cells from sticking to new sites could interfere with metastatic disease, and halt the growth of secondary tumors.
In 2007, cancer claimed the lives of about 7.6 million people in the world. Physicians and researchers who specialize in the study, diagnosis, treatment, and prevention of cancer are called oncologists.
Malignant cells are more agile than non-malignant ones – scientists from the Physical Sciences-Oncology Centers, USA, reported in the journal Scientific Reports (April 2013 issue) that malignant cells are much “nimbler” than non-malignant ones. Malignant cells can pass more easily through smaller gaps, as well as applying a much greater force on their environment compared to other cells.
Professor Robert Austin and team created a new catalogue of the physical and chemical features of cancerous cells with over 100 scientists from 20 different centers across the United States.
The authors believe their catalogue will help oncologists detect cancerous cells in patients early on, thus preventing the spread of the disease to other parts of the body.
Prof. Austin said “By bringing together different types of experimental expertise to systematically compare metastatic and non-metastatic cells, we have advanced our knowledge of how metastasis occurs.”
WHAT CAUSES CANCER?
Cancer is ultimately the result of cells that uncontrollably grow and do not die. Normal cells in the body follow an orderly path of growth, division, and death. Programmed cell death is called apoptosis, and when this process breaks down, cancer begins to form. Unlike regular cells, cancer cells do not experience programmatic death and instead continue to grow and divide. This leads to a mass of abnormal cells that grows out of control.
WHAT IS CANCER? – VIDEO
A short, 3D, animated introduction to cancer. This was originally created by BioDigital Systems and used in the Stand Up 2 Cancer telethon.
GENES – THE DNA TYPE
Cells can experience uncontrolled growth if there are damages or mutations to DNA, and therefore, damage to the genes involved in cell division. Four key types of gene are responsible for the cell division process: oncogenes tell cells when to divide, tumor suppressor genes tell cells when not to divide, suicide genes control apoptosis and tell the cell to kill itself if something goes wrong, and DNA-repair genes instruct a cell to repair damaged DNA.
Cancer occurs when a cell’s gene mutations make the cell unable to correct DNA damage and unable to commit suicide. Similarly, cancer is a result of mutations that inhibit oncogene and tumor suppressor gene function, leading to uncontrollable cell growth.
CARCINOGENS
Carcinogens are a class of substances that are directly responsible for damaging DNA, promoting or aiding cancer. Tobacco, asbestos, arsenic, radiation such as gamma and x-rays, the sun, and compounds in car exhaust fumes are all examples of carcinogens. When our bodies are exposed to carcinogens, free radicals are formed that try to steal electrons from other molecules in the body. Theses free radicals damage cells and affect their ability to function normally.
GENES – THE FAMILY TYPE
Cancer can be the result of a genetic predisposition that is inherited from family members. It is possible to be born with certain genetic mutations or a fault in a gene that makes one statistically more likely to develop cancer later in life.
OTHER MEDICAL FACTORS

As we age, there is an increase in the number of possible cancer-causing mutations in our DNA. This makes age an important risk factor for cancer. Several viruses have also been linked to cancer such as: human papillomavirus (a cause of cervical cancer), hepatitis B and C (causes of liver cancer), and Epstein-Barr virus (a cause of some childhood cancers). Human immunodeficiency virus (HIV) – and anything else that suppresses or weakens the immune system – inhibits the body’s ability to fight infections and increases the chance of developing cancer.
WHAT ARE THE SYMPTOMS OF CANCER?
Cancer symptoms are quite varied and depend on where the cancer is located, where it has spread, and how big the tumor is. Some cancers can be felt or seen through the skin – a lump on the breast or testicle can be an indicator of cancer in those locations. Skin cancer (melanoma) is often noted by a change in a wart or mole on the skin. Some oral cancers present white patches inside the mouth or white spots on the tongue.
Other cancers have symptoms that are less physically apparent. Some brain tumors tend to present symptoms early in the disease as they affect important cognitive functions. Pancreas cancers are usually too small to cause symptoms until they cause pain by pushing against nearby nerves or interfere with liver function to cause a yellowing of the skin and eyes called jaundice. Symptoms also can be created as a tumor grows and pushes against organs and blood vessels. For example, colon cancers lead to symptoms such as constipation, diarrhea, and changes in stool size. Bladder or prostate cancers cause changes in bladder function such as more frequent or infrequent urination.
As cancer cells use the body’s energy and interfere with normal hormone function, it is possible to present symptoms such as fever, fatigue, excessive sweating, anemia, and unexplained weight loss. However, these symptoms are common in several other maladies as well. For example, coughing and hoarseness can point to lung or throat cancer as well as several other conditions.
When cancer spreads, or metastasizes, additional symptoms can present themselves in the newly affected area. Swollen or enlarged lymph nodes are common and likely to be present early. If cancer spreads to the brain, patients may experience vertigo, headaches, or seizures. Spreading to the lungs may cause coughing and shortness of breath. In addition, the liver may become enlarged and cause jaundice and bones can become painful, brittle, and break easily. Symptoms of metastasis ultimately depend on the location to which the cancer has spread.
HOW IS CANCER CLASSIFIED?
There are five broad groups that are used to classify cancer.
  1. Carcinomas are characterized by cells that cover internal and external parts of the body such as lung, breast, and colon cancer.
  2. Sarcomas are characterized by cells that are located in bone, cartilage, fat, connective tissue, muscle, and other supportive tissues.
  3. Lymphomas are cancers that begin in the lymph nodes and immune system tissues.
  4. Leukemias are cancers that begin in the bone marrow and often accumulate in the bloodstream.
  5. Adenomas are cancers that arise in the thyroid, the pituitary gland, the adrenal gland, and other glandular tissues.
Cancers are often referred to by terms that contain a prefix related to the cell type in which the cancer originated and a suffix such as -sarcoma, -carcinoma, or just -oma. Common prefixes include:
  • Adeno- = gland
  • Chondro- = cartilage
  • Erythro- = red blood cell
  • Hemangio- = blood vessels
  • Hepato- = liver
  • Lipo- = fat
  • Lympho- = white blood cell
  • Melano- = pigment cell
  • Myelo- = bone marrow
  • Myo- = muscle
  • Osteo- = bone
  • Uro- = bladder
  • Retino- = eye
  • Neuro- = brain
HOW IS CANCER DIAGNOSED AND STAGED?
Early detection of cancer can greatly improve the odds of successful treatment and survival. Physicians use information from symptoms and several other procedures to diagnose cancer. Imaging techniques such as X-rays, CT scans, MRI scans, PET scans, and ultrasound scans are used regularly in order to detect where a tumor is located and what organs may be affected by it. Doctors may also conduct an endoscopy, which is a procedure that uses a thin tube with a camera and light at one end, to look for abnormalities inside the body.

Extracting cancer cells and looking at them under a microscope is the only absolute way to diagnose cancer. This procedure is called a biopsy. Other types of molecular diagnostic tests are frequently employed as well. Physicians will analyze your body’s sugars, fats, proteins, and DNA at the molecular level. For example, cancerous prostate cells release a higher level of a chemical called PSA (prostate-specific antigen) into the bloodstream that can be detected by a blood test. Molecular diagnostics, biopsies, and imaging techniques are all used together to diagnose cancer.

Cohort study…Analytical Study Design in Medical Research(partII)


Cohort studies are observational analytical studies, the word ‘cohort’ is derived from the Latin word ‘cohors’, which means unit. For conducting cohort type of studies, the study population is chosen from general population both exposed to a certain agent suspected for disease development and unexposed to the cause. The population is followed for a longer period of time. The incidence in disease development in exposed group is compared with the non-exposed group. Therefore, the objective of a cohort study is to find out association between a suspected cause(s) and disease. If performed correctly, cohort studies can predict results comparable to the experimental analytical studies. The following measurements can be done in a cohort study design: absolute risk or incidence, relative risk (risk ratio or rate ratio), risk difference, and attributable proportion. Cohort studies are classified as prospective and retrospective studies based on the timing of enrollment of subjects and disease outcome.

Analytical Study Designs in Medical Research…part(I)


In medical research, it is important for a researcher to know about different analytical studies. The objectives of different analytical studies are different, and each study aims to determine different aspects of a disease(s) such as prevalence, incidence, cause, prognosis, or effect of treatment. Therefore, it is essential to identify the appropriate analytical study associated with certain objectives. 

Analytical studies are classified as experimental and observational studies. While in an experimental study, the investigator examines the effect of presence or absence of  certain intervention(s), he does not need to intervene in a observational study, rather he observes and assesses the  relation between exposure and disease variable. Interventional studies or clinical trials fall under the category of experimental study where investigator assigns the exposure status. Observational studies are of four types: cohort studies, case-control studies, cross-sectional studies, and longitudinal studies

While experimental studies are sometimes non indicative or not ethical to conduct or very expensive, observational studies probably are the next best approach to answer certain investigative questions. Well-designed observational studies may also produce similar results as controlled trials; therefore, probably, the observational studies may not be considered as second best options. In order to design an appropriate observational study, one should able to distinguish between four different observational studies and their appropriate application depending on the investigative questions. Following is a brief discussion on four different observational studies (each will be discussed in detail individually in my upcoming blogs):

Observational Analytical Study Designs

Cohort studies

Cohort methodology is one of the main tools of analytical epidemiological research. The word “cohort” is derived from the Latin word “cohors” meaning unit. The word was adopted in epidemiology to refer a set of people monitored for a period of time. In modern epidemiology, the word is now defined as “group of people with defined characteristics who are followed up to determine incidence of, or mortality from, some specific disease, all causes of death, or some other outcome” (Morabia, 2004). In cohort studies, individuals are identified who initially do not have the outcome of interest and followed for a period of time. The group can be classified in sub sets on the basis of the exposure. For example, a group of people can be identified consisting of both smoker and non-smoker and followed them for the incidence of lung cancer. At the beginning of the study none of the individuals have lung-cancer and the individuals are grouped into two sub sets as smoker and non-smoker and then followed for a period of time for different characteristics of exposure such as smoking, BMI, eating habits, exercise habits, family history of lung cancer or cardiovascular diseases, etc. Over the time, some individuals develop the outcome of interest. From the data collected over time, it is convenient to evaluate the hypothesis whether smoking is related with the incidence of lung cancer. The following schematic shows the basic design of a cohort study. There are two types of cohort studies: prospective and retrospective. A prospective study is conducted at present but followed up to future i.e., waiting for the disease to develop. On the other hand, a retrospective study is carried out at present on the data collected in the past. This is also called as historic cohort study. In the next blog, I will discuss these in detail.

Case-control studies

In terms of objective, case-control studies and cohort studies are same. Both are observational analytical studies, which aim to investigate the association between exposure and outcome. The difference lies in the sampling strategy. While cohort studies identify the subjects based on the exposure status, case-control studies identify the subjects based on the outcome status. Once the outcome status is identified the subjects are divided into two sets: case and control (who do not develop the outcome). For example, a study design which determines the relation between endrometrial cancer with use of conjugated estrogen. For this study, subjects are chosen based on the outcome status (endrometrium cancer) i.e., with disease present (case) and absent (control), and then these two subsets are compared with respect to the exposure (use of conjugated estrogen). Therefore, case-control study is retrospective in nature and cannot be used for calculating relative risk. However, odd ratio can be measured, which in turn, is approximate to relative risk. In cases of rare outcomes, case control study is probably the only feasible analytical study approach.

Cross-sectional studies
Cross-sectional study is a type of observational analytical study which is used primarily to determine the prevalence without manipulating the study environment. For example, a study can be designed to determine the cholesterol level in walker and non-walker without exerting any exercise regime or activity on non-walkers or modifying the activity of the walkers. Apart from cholesterol other characteristics of interest, such as age, gender, food habits, educational level, occupation, income, etc., can also be measured. The data collected at one time in present with no further follow up. In cross-sectional design, one can study a single population (only walkers) or more than one population (both walker and non-walker) at one point of time to see the association between cholesterol level and walking. However, the design of this study does not allow to examine the causal of a certain condition since the subjects are never been followed either in past or present. 

Longitudinal studies

Longitudinal studies, similar to cross-sectional studies, are also a type of observational analytical studies. However, the difference of this study design with the cross-sectional study is the following up the subjects for a longer time; hence, can contribute more to the association of causative to a condition. For example, the design that aims to determine the cholesterol level of a single population, say the walkers over a period of time along with some other characteristics of interest such as age, gender, food habits, educational level, occupation, income, etc. One may choose to examine the pattern of cholesterol level in men aged 35 years walking daily for 10 years. The cholesterol level is measured at the onset of the activity (here, walking) and followed up throughout the defined time period, which enables to detect any change or development in the characteristics of the population.
Following two tables summarize different observational analytical studies with regard to the objectives and time-frame.




References
[1] Morabia, A (2004). A History of Epidemiologic Methods and Concepts. Birkhaeuser Verlag; Basel: p. 1-405.
[2] Hulley, S.B., Cummings, S.R., Browner, W.S., et al (2001). Designing Clinical Research: An Epidemiologic Approach. 2nd Ed. Lippincott Williams & Wilkins; Philadelphia: p. 1-336.
[3] Merril, R.M., Timmreck, T.C (2006).  Introduction to Epidemiology. 4th Ed. Jones and Bartlett Publishers; Mississauga, Ontario: p. 1-342.
[4] Lilienfeld, A.M., and Lilienfeld, D.E. (1980): Foundations of Epidemiology. Oxford University Press, London.

Saturday, March 19, 2016

Online Training Courses


Below are links to other e-learning resources that are available on-line either free or at low cost. We recommend these resources as they help to support and enhance clinical research. Although many are disease specific their content is often adaptable:
Pharma Lessons offer several free online training courses in the form of short presentations, prepared for the pharmaceutical & biotech industry. Currently on offer are Good Clinical Practice (GCP) Training, Good Distribution Practice (GDP) Training, Good Manufacturing Practice (GMP) Training and Good Pharmacovigilance Practice (GVP) Training.http://www.pharmalessons.com
The Geneva Foundation for Medical Education and Research in collaboration with the Oxford Maternal & Perinatal Health Institute have developed two online training courses:The evidence-based management of pre-eclampsia and eclampsia:http://www.gfmer.ch/SRH-Course-2010/pre-eclampsia-University-of-Oxford/index.htmThe evidence-based management of postpartum haemorrhage:http://www.gfmer.ch/omphi/pph/course.htm
NIH clinical research training online. This training is freely available online and is very comprehensive. However, it is focussed to clinical trials in the United States and so may not be applicable in all regions:http://www.cc.nih.gov/training/training/crt.html
Pharma School has some free training content:http://www.pharmaschool.co/
USAID have a Global Health eLearning Centre giving online training on specific disease topics including ‘Introduction to Mobile Technology for Health‘:http://www.globalhealthlearning.org/login.cfm
This is a free online course on statistics for clinical trials:http://onlinestatbook.com/index.html
John Hopkins Bloomburg School of Public Health offer these free online disease-related courses:http://ocw.jhsph.edu/
The HINARI ‘Access to Research in Health’ Programme was set up by WHO together with major publishers to enable developing countries to gain access to one of the world’s largest collections of biomedical and health literature.  Access is free or at a reduced cost for eligible countrieshttp://www.healthinternetwork.org/
The Wellcome Trust offer advanced training courses and scientific conferences.  For these they provide limited bursaries for non-commercial applicants to cover up to 100% of the course fee.  Funding is also  available to assist with travel costs.http://www.wellcome.ac.uk/Education-resources/Courses-and-conferences/index.htm
The ‘Training and Resources in Research Ethics Evaluation’ (TRREE) website offers completely open access and free of charge basic training modules on research ethics and regulation.  The learning material is currently available in English, French, German and Portuguese.http://elearning.trree.org/
Working To Empower is a non-profit and non-governmental organization working to empower sustainable, community-based change.  The website provides a range of free articles, videos and resources in a wide variety of languages.http://www.workingtoempower.org/index.php?lang=en
The Health Education and Training Programme (HEAT) provide free courses which are designed for healthcare workers studying in sub-Saharan Africahttp://www8.open.ac.uk/africa/heat/heat-resources.
The EQUATOR Network is an international initiative that seeks to enhance reliability and value of medical research literature by promoting transparent and accurate reporting of research studies. The EQUATOR Network produce resources, education and training relating to the reporting of health research and use of reporting guidelines.http://www.equator-network.org/
The University of Alabama School of Medicine have produced multiple training materials for basic biostatics concepts and tools. All modules are free and availible as video, Powerpoint and PDF:http://statcourse.dopm.uab.edu/Coursematerial.htm
The Association of Schools of Public Health provide a free, open access course on Ethics and Public Health: Model Curriculumhttp://www.asph.org/document.cfm?page=782
The People’s Open Access Education Initiative (Peoples-uni) is helping to build international Public Health capacity using Internet-based e-learning at a greatly reduced cost:http://peoples-uni.org/
The Global Health Reviewers e-learning page contains links to a wide range of independent courses for committee members who review research for ethics committees, review boards or regulatory committees, or for those developing protocols for review:http://globalhealthreviewers.tghn.org/elearning/
Coursera provide several courses in Health and Society and Medical Ethics. these courses are on a scheduled basis and only availible at certain dates throughout the year:https://www.coursera.org/category/health
The University of Southampton have developed an eLearning portal dedicated to nutrition and public health nutrition learning:https://www.som.soton.ac.uk/learn/test/nutrition/Default.asp
The University of the Western Cape and the Multi-disciplinary University Traditional Health Initiative (MUTHI) have combined to produce excellent courses for Clinical trials in herbal medicine. To register for free please visit:http://muthi.uwc.ac.za/
The University of Sheffield offers three new health related courses through Blackboard’s CourseSites platfor. These courses can be accessed via Blackboards massive open online courses (MOOCs):https://scharrmoocs.coursesites.com/?goback=.gde_120372_member_244510837
Consortium of Universities fo Global Health (CUGH) offers a bi – weekly feature: a case – series from rural Uganda called “Reasoning without Resources”.The target audience is clinicians practicing in low resource settings, medicine and family medicine residents, and senior medical students with an interest in clinical global health.http://www.cugh.org/resources/case-studies-reasoning-without-resources
Knowledge for Health provide many resources aimed at improving access to and sharing of global, regional, and country-specific public health knowledge, particularly about family planning and reproductive healthhttp:http://www.k4health.org/resources
MPH Programs have curated resources featuring over 140+ internship opportunities, 200+ free online public health courses including many on Epidemiology, chronic & infectious diseases as well as the most in demand jobs & careers:
http://mphprogramslist.com/
Clinical Trials Network provide a free online Good Clinical Practice training course. The Good Clinical Practice (GCP) online training consists of 12 modules. Each module discusses a specific GCP standard. General conduct of research standards are also presented:http://gcp.nihtraining.com/login.php?lo=true
The Swiss Tropical and Public Health Institute offer an online diagnostic medical parasitology training course complete with a virtual microscope entitled Introduction to Diagnostic Medical Parasitology for both Protozoa and Helminths:http://www.parasite-diagnosis.ch/

GCP online training COURSE



FREE online training for individuals, academic and private organisations.The Better Industry Initiative provides free quality training resources, relevant to the prerequisites, challenges and goals of clinical researchers and thereby encourages the professional development of current and future clinical research practitioners. The ultimate goal of the Bii is to better serve patients by equipping future and current industry professionals with more refined skills and workflow efficiency tools, in order to achieve better results.


Harvard Online Learning courses



Harvard Online Learning (free on line courses)

Explore Harvard’s extensive, world-class online learning opportunities. We invite you to follow your intellectual curiosity, from podcasts and lectures to fully interactive courses and programs


About Blogger:

Hi,I,m Basim from Canada I,m physician and I,m interested in clinical research feild and web development.you are more welcome in our professional website.all contact forwarded to basimibrahim772@yahoo.com.


Let's Get Connected: Twitter | Facebook | Google Plus| linkedin

 

Subscribe to us