An expert is one who knows more and more about less and less until he knows absolutely everything about nothing

Sunday, March 20, 2016

Good Clinical Practice GCP


Good clinical practice (GCP)
is an international quality standard that is provided by ICH, an international body that defines standards, which governments can transpose into regulations for clinical trials involving human subjects. A similar guideline for clinical trials of medical devices is the international standard ISO 14155, that is valid in the European Union as a harmonized standard. These standards for clinical trials are sometimes referred to as ICH-GCP or ISO-GCP to differentiate between the two and the lowest grade of recommendation in clinical guidelines
GCP follows the International Conference on Harmonisation (ICH) of GCP guidelines. GCP enforces tight guidelines on ethical aspects of a clinical study. High standards are required in terms of comprehensive documentation for the clinical protocol, record keeping, training, and facilities, including computers and software. Quality assurance and inspections ensure that these standards are achieved. GCP aims to ensure that the studies are scientifically authentic and that the clinical properties of the investigational product are properly documented. Ongoing research shows that whether conducting research involving a new drug, a behavioral intervention, or an interview or survey, GCP provides investigators and their study teams with the tools to protect human subjects and collect quality data.
GCP guidelines include protection of human rights for the subjects and volunteers in a clinical trial. It also provides assurance of the safety and efficacy of the newly developed compounds.
GCP guidelines include standards on how clinical trials should be conducted, define the roles and responsibilities of clinical trial sponsors, clinical research investigators, and monitors. In the pharmaceutical industry monitors are often called Clinical Research Associates.

Good Clinical Practice Overview

THE TUSKEGEE EXPERIMENT



CLINICAL RESEARCH ETHICS: THE TUSKEGEE EXPERIMENT


The Tuskegee syphilis experiment (/tʌsˈkiːɡiː/) was an infamous clinical study conducted between 1932 and 1972 by the U.S. Public Health Service to study the natural progression of untreated syphilis in rural African-American men in Alabama. They were told that they were receiving free health care from the U.S. government
The Public Health Service started working on this study in 1932 during the Great Depression, in collaboration with the Tuskegee Institute, a historically black college in Alabama. Investigators enrolled in the study a total of 600 impoverished sharecroppers from Macon County, Alabama. Of these men, 399 had previously contracted syphilis before the study began, and 201 did not have the disease. The men were given free medical care, meals, and free burial insurance for participating in the study. None of the men infected was ever told he had the disease, nor was any treated for it with penicillin after this antibiotic became proven for treatment. According to the Centers for Disease Control, the men were told they were being treated for “bad blood”, a local term for various illnesses that include syphilis, anemia, and fatigue.
The 40-year study was controversial for reasons related to ethical standards, primarily because researchers knowingly failed to treat patients appropriately after the 1940s validation of penicillin as an effective cure for the disease they were studying. Revelation in 1972 of study failures by a whistleblower led to major changes in U.S. law and regulation on the protection of participants in clinical studies. Now studies require informed consent  communication of diagnosis, and accurate reporting of test results.
By 1947, penicillin had become the standard treatment for syphilis. Choices available to the doctors involved in the study might have included treating all syphilitic subjects and closing the study, or splitting off a control group for testing with penicillin. Instead, the Tuskegee scientists continued the study without treating any participants; they withheld penicillin and information about it from the patients. In addition, scientists prevented participants from accessing syphilis treatment programs available to other residents in the area. The study continued, under numerous US Public Health Service supervisors, until 1972, when a leak to the press resulted in its termination on November 16 of that year. The victims of the study included numerous men who died of syphilis, 40 wives who contracted the disease, and 19 children born with congenital syphilis.
The Tuskegee Syphilis Study, cited as “arguably the most infamous biomedical research study in U.S. history”,led to the 1979 Belmont Report and the establishment of the Office for Human Research Protections (OHRP) It also led to federal laws and regulations requiring Institutional Review Boards for the protection of human subjects in studies involving human subjects. The Office for Human Research Protections (OHRP) manages this responsibility within the USDepartment of Health and Human Services (HHS)
Dr. Nicholas Herten-Greaven lectures about the Tuskegee syphilis experiment as part of the Ethics in Clinical Research course at Oxford College

Why patient should be randomized


randomized controlled trial (or randomized control trial RCT) is a type of scientific (often medical) experiment, where the people being studied are randomly allocated one or other of the different treatments under study. The RCT is often considered the gold standard for a clinical trial. RCTs are often used to test the efficacy or effectiveness of various types of medical intervention and may provide information about adverse effects, such as drug reactions. Random assignment of intervention is done after subjects have been assessed for eligibility and recruited, but before the intervention to be studied begins.

Dr Judith Kramer

Why patient should be randomized


Designing Clinical Trials


Presented by Dr. Brent Logan, PhD, Professor in the Division of Biostatistics, Medical College of Wisconsin. This lecture will provide an overview of study designs and statistical issues in all phases of clinical trials. We will start by describing dose-finding phase I designs, and then will cover phase II designs, including the framework for determining sample size and the use of two-stage designs. The remainder of the lecture will focus on major design issues in phase III clinical trials, including endpoint specification, eligibility, power and sample size calculation, blinding, randomization, stratification, and data monitoring

Database Management

Series of lecture in Database Management

Database management systems (DBMS) are computer software applications that interact with the user, other applications, and the database itself to capture and analyze data. A general-purpose DBMS is designed to allow the definition, creation, querying, update, and administration of databases. Well-known DBMSs include MySQL, PostgreSQL, Microsoft SQL Server, Oracle, Sybase and IBM DB2. A database is not generally portable across different DBMSs, but different DBMS can interoperate by using standards such as SQL and ODBC or JDBC to allow a single application to work with more than one DBMS. Database management systems are often classified according to the database model that they support; the most popular database systems since the 1980s have all supported the relational modelas represented by the SQL language. Sometimes a DBMS is loosely referred to as a ‘database’.

 Part1

part2

Lecture 2 Part 3

Lecture 2 Part 4

Lecture 2 Part 5

Lecture 2 Part 6

Lecture 2 Part 7

Lecture 2 Part 8

Lecture 2 Part 9

Clinical Trials



Clinical Trials Lectures

Clinical trials are experiments done in clinical research. Such prospective biomedical or behavioral research studies on human participants are designed to answer specific questions about biomedical or behavioral interventions, including new treatments (such as novel vaccines, drugs, dietary choices, dietary supplements, andmedical devices) and known interventions that warrant further study and comparison. Clinical trials generate data on safety and efficacy.They are conducted only after they have received health authority/ethics committee approval in the country where approval of the therapy is sought. These authorities are responsible for vetting the risk/benefit ratio of the trial – their approval does not mean that the therapy is ‘safe’ or effective, only that the trial may be conducted.
Clinical Trials: Follow-up, Adherence to the Protocol and Post-Randomization
Dennis Black, MA, PhD

CLINICAL TRIALS LECTURE PART 1

CLINICAL TRIALS LECTURE PART 2

CLINICAL TRIALS LECTURE PART 3

CLINICAL TRIALS LECTURE PART 4

CLINICAL TRIALS LECTURE PART 5

CLINICAL TRIALS LECTURE PART 6

CLINICAL TRIALS LECTURE PART 7

CLINICAL TRIALS LECTURE PART 8

About Blogger:

Hi,I,m Basim from Canada I,m physician and I,m interested in clinical research feild and web development.you are more welcome in our professional website.all contact forwarded to basimibrahim772@yahoo.com.


Let's Get Connected: Twitter | Facebook | Google Plus| linkedin

 

Subscribe to us